
www.manaraa.com

From page-centric to portlet-centric Web
development: easing the transition using MDD∗

Oscar Díaz, Arantza Irastorza, Jesús Sánchez Cuadrado∗, Luis M. Alonso

February 10, 2009

ONEKIN Research Group, Department of Computer Languages and Systems, Uni-
versity of the Basque Country, 20080 San Sebastian (Spain) PO Box 649 Tel: 34 943
018064
* GTS Research Group, Department of Computer Science and Systems, University of
Murcia, Campus de Espinardo, 30100 Murcia (Spain)

oscar.diaz@ehu.es, arantza.irastorza@ehu.es, jesusc@um.es, jipalgol@ehu.es

Abstract
Portlet syndication is the next wave following the successful use of content syn-

dication in current portals. Portlets can be regarded as Web components, and the
portal as the component container where portlets are aggregated to provide higher-
order applications. This perspective requires a departure from how current Web
portals are envisaged. The portal is no longer perceived as a set of pages but as an
integrated set of Web components that are now delivered through the portal. From
this perspective, the portal page now acts as a mere conduit for portlets. Page and
page navigation dilute in favor of portlet and portlet orchestration. However, the
mapping from portlet orchestration (design time) to page navigation (implementa-
tion time) is too tedious and error prone. For instance, the fact that the same portlet
can be placed in distinct pages produces code clones that are repeated along the
pages that contain this portlet. This redundancy substantiates in the first place the
effort to move to model-driven development. This work uses the eXo platform as
the target PSM, and the PIM is based on Hypermedia Model Based on Statecharts.
The paper shows how this approach accounts for portal validation/verification to
be conducted earlier at the PIM level, and streamlines both design and implemen-
tation of eXo portals. A running example is used throughout the paper.

Keywords: portlets, model-driven development, service-oriented architecture, web por-
tals

1 Introduction
Web portals offer corporations a means by which to manage and access content from
disparate sources across the firm. Frequently, this content is obtained locally in a va-

∗Published in Information and Software Technology Journal, Vol. 50 (12), Pages 1210-1231, November
2008 (doi:10.1016/j.infsof.2007.11.006)

1

www.manaraa.com

riety of formats that the portal makes transparent and adapt to the user profile. This is
the role of the portal as a content manager.

But, the significance of portal applications stems not only from being a handy way
to access data but also from being the means of facilitating the integration with third
party applications. Information contained in one application will surely be needed in
another, and requiring the individual user to manually bridge these gaps leads to frustra-
tion, lost productivity, and inevitable mistakes. More to the point, an increasing amount
of content comes from outside the portal itself, and the main challenge is in integrat-
ing (“composing”) these heterogeneous data sources. Examples of this tendency are
content syndication (RSS and related standards) and Web mashup (i.e. a Web page or
application that combines data from two or more external online sources). This has lead
to the so-called portal imperative: the emergence of portal software as a universal in-
tegration mechanism [40]. This imperative is paving the way from the first-generation,
content-centric portals towards the second-generation, service-oriented portals [39].

Unfortunately, current portal applications tend to be rather monolithic in both con-
ception and support. This can be traced back to the fact that many first generation
portal development environments evolved from content management origins. For por-
tal applications to take hold, customers need to look at solutions that support a pro-
gramming model centered around service interfaces. Ideally, these service interfaces
would be provided by loosely coupled components that are unshackled from process
and relatively free of dependency on underlying infrastructure technologies. This is a
distinct move away from monolithic portals to the idea of portals as entry points into a
combination of services. The result is a collection of re-usable, and more importantly,
easily upgradeable services as opposed to those assets being locked into rigid mono-
lithic portals. As stated in [40], "needed is a development environment designed with
an application orientation, rather than a content-centric perspective, which offers the
ability to manage portals at component-level across the entire application lifecycle".

An evidence of the need of componentware in a portal setting is the widespread
adoption of portlets among commercial players. Portlets are Web applications which
are packed to be delivered through third-party Web applications (e.g. a portal). As
Web applications, portlets are user-facing (i.e. return markup fragments rather than
data-based XML) and multi-step (i.e. they encapsulate a chain of steps rather than a
one-shot delivering) [10]. They are very much like Windows applications in a user
desktop, in the sense that a portlet renders markup fragments that are surrounded by a
decoration containing controls. Oracle, IBM, and BEA are examples of providers of
Integrated Development Environments (IDE) for portal construction where the notion
of portlet is incorporated.

However, portal IDEs have not yet exploited the full potential of portlets. The
content-management role is still prevalent in most of current IDEs. The portal is still
conceived as a conglomerate of pages where portlets tend to be considered as a modular
mechanism during page implementation. The page is still the main notion, and the
portlet is subordinated to the page. This has important consequences since portlet
navigation (i.e. browsing along the portlet fragments) is completely detached from
portal navigation (i.e. browsing along the portal pages). And all portlets are readily
rendered when entering in the container page.

Yet, portlets strive to play at the front end the same role that Web services currently

2

www.manaraa.com

enjoy at the back end, namely, enablers of application assembly through reusable ser-
vices. On the portlet case, the difference stems from what is being reused (i.e. which
includes the presentation layer) and where is the integration achieved (i.e. at the front
end).

This makes portlets the enablers of service-oriented architectures (SOAs) but now
at the front end. This perspective requires a departure from how current Web portals
are envisaged. The portal is no longer perceived as a set of pages but as an integrated
set of Web components that are now delivered through the portal (i.e. portlets). From
this perspective, the portal page now acts as a mere conduit for portlets. Page and page
navigation dilute in favor of portlet and portlet orchestration. This paper promotes this
service-oriented view of Web portals.

To this end, portal design should abstract away from pages and be conceived in
terms of portlets and portlet orchestration. However, the mapping from portlet or-
chestration (design time) to page navigation (implementation time) is too tedious and
error-prone. The fact that the same portlets can be placed in distinct pages produces
code clones that are repeated along the pages that contain this portlet. This redundancy
substantiates in the first place the effort to move to model-driven development (MDD).
The combined use of models and transformations made MDD an excellent reuse tech-
nique even if diversity in the implementation platform is not an issue.

Therefore, this paper reports on an MDD approach to service-oriented portal devel-
opment. It follows the MDA (Model-Driven Architecture) proposal [29], and defines a
Platform Independent Model (PIM), a Platform Specific Model (PSM) and the mapping
transformations.

The PIM abstracts portal and portlets into workspace and tasks, respectively. The
workspace specifies how tasks are engaged in workflows that guide the user in ac-
complishing some goal. However, traditional workflows impose a rigid control on the
activities and data available where tasks are predetermined. By contrast, a “deskflow”
should be more easy-going where users can freely browse along the available tasks
while some general guidelines can be prescribed.

Therefore, the challenge is to find a formalism ductile enough to specify both con-
straint and unconstrained task flows. This paper argues about the benefits of using
statecharts for this purpose. Statecharts have been traditionally used for control speci-
fication, and presentation concerns fall outside. But portlets are front-end applications.
Therefore, an extension to statecharts is adopted that uses the structure and execution
semantics of statecharts to specify both the structural organization and the browsing
semantics of portlet aggregation [14].

The proposed PIM, called SOP (it stands for Service-Oriented Portal), aggregates
the three viewpoints of a portal: tasks, orchestration (that is, flow) and rendering or
presentation. As for the PSM, the eXo platform [12] is used. eXo is an open-source
enterprise portal framework that support portlets. However, the portal is still conceived
in terms of pages, where portlets are regarded as subordinated modules that output page
fragments. Bridging the gap between SOP and eXo requires the use of transformation
rules that map SOP constructs into eXo code. To this end, the RubyTL transformation
language [38] is used.

Last but not least, we find most important to illustrate the benefits that MDD
brought to our domain. From a practitioner’s viewpoint, the often-claimed MDD ben-

3

www.manaraa.com

efits (e.g. reduced costs, improved quality, reduced development time) should be made
evident through concrete example. We attempt to provide such a case through a sample
case for a six-portlet portal. This Browsing portal is available at http://www.onekin.org/academicBrowsing/

The rest of the paper is structured as follows. The notion of portlet is first intro-
duced in section 2, section 3 provides an overview of portal development as an MDD
development process. Section 4 introduces a metamodel for WSRP interfaces. The
Platform Specific Model (i.e. the eXo platform) and the Platform Independent Model
(i.e. annotated statecharts) are the topics of sections 6 and 5, respectively. The trans-
formation from the PIM to the PSM is addressed in section 7. Section 8 outlines the
benefits drawn from this approach. Related work is presented in section 9. Conclusions
end the paper.

2 A brief on portlets
Web Services facilitate the sharing of the business logic, but suggest that Web Service
consumers should write a new presentation layer on top of the business logic. As
an example, consider a Web service that offers two operations, namely, searchFlight
and bookFlight. The former retrieves flights that match some input parameters (e.g.
departureAirport, flightDates and so on), while bookFlight takes the selected flight
and payment data, and books a seat on this flight.

Figure 1: The flightSearch portlet being delivered through a portal.

This WSDL-based API can then be used by a consumer application. First, the
application would collect the departureAirport, flightDates and other parameters via
an input form. Within the form, an http request might support a call to searchFlight
which, in turn, returns a set of flights whose presentation is left to the calling appli-
cation. Next the user selects one of the flights and, through another form, the Web

4

www.manaraa.com

application collects the user’s information and payment data. This interaction will in
turn invoke bookFlight. This example illustrates the traditional approach where Web
services provide the business logic, and both presentation and navigation strategies are
left to the calling application (i.e. the presentation layer).

But what if now we want to re-use the whole application, i.e. the business logic as
well as the presentation and navigation code? It is worth noticing that presentation and
navigation realization are very time consuming activities that convey costly marketing
strategies that companies are interested in capitalizing when their services are offered
through third-party Web applications. So far, most SOA approaches achieve integration
at the back-end. Portlets open the door to achieve similar gains but now through front-
end integration.

Let’s go back to the flight-booking example, but now delivered as a portlet. A
flightSearch portlet is defined that encapsulates not only the business logic but also the
navigation and presentation realizations. Unlike the traditional Web-service approach,
now the consumer of flightSearch re-uses both the presentation and the navigation.
As for the presentation, portlet operations are still WSDL (Web Services Description
Language) compliant, but now their XML results might convey not only raw data but
rendering markup such as XHTML (known as "fragments" in the portlet parlance).
This XHTML fragment is ready to be included within the consumer page. As for the
navigation, now all interactions with a given portlet belong to the very same session,
and hence, session and state management should be preserved along these interactions.
Although different approaches exist, this can be the duty of the portlet producer, and
hence, the consumer is relieved from the burden of complex and intricate session man-
agement and control flow. Figure 1 shows the flightSearch portlet when offered through
a portal.

Portlets rest on two main standardization efforts: WSRP (Web Services for Remote
Portlets) [28] and JSR168 (Java Specification Requests: Portlet Specification) [21].
WSRP standardizes the interfaces of the Web services a portlet producer must imple-
ment to allow another application (typically a portal) to consume its portlets. As for
JSR168, it is a Java Community Process that standardizes an API for implementing
local, WSRP-compatible portlets.

It is well-known in the component community that, the larger the component, the
more reduced the reuse. Portlets tend to be statefull, coarse-grained components since
they encapsulate the presentation layer and all the navigation that goes with it. Con-
sequently, mechanisms should be in place to configure the portlet to the environment
where the portlet is going to be "hooked on". This context includes the window state,
the user profiles, aesthetic guidelines and additional portlet-specific data collected as
WSRP-compliant portlet preferences. Next paragraphs outline some of these context
properties.

Window state. This property sets the amount of page space that the portal will as-
sign to the fragment generated by the portlet. Options contemplated by WSRP include:
normal, indicates the portlet is likely sharing the aggregated page with other portlets;
minimized, instructs the portlet not to render visible markup, but lets it free to include
non-visible data such as JavaScript or hidden forms; maximized, specifies that the port-
let is likely the only portlet being rendered in the aggregated page, or that the portlet
has more space compared to other portlets in the aggregated page; and solo, denotes

5

www.manaraa.com

the portlet is the only portlet being rendered in the aggregated page. This property is
set by the portal among the values supported by the portlet Producer.

User profile. The user profile is used to personalize content to the idiosyncrasies
of end users. Now, this content is offered via portlets. Thus, parameters are defined
in WSRP to pass this data from the portal to the portlet producer. User Informa-
tion Attributes Names are derived from the Platform for Privacy Preferences 1.0 (P3P
1.0) by OASIS where attributes are described such as user.name.given, user.business-
info.telecom.telephone.intcode and the like.

Aesthetic guidelines. Now a portal page is produced as “portlet quilt”. Hence, it is
most important to ensure a common look-and-feel across the distinct portlet markups to
be rendered in the same portal page (i.e. similar background, fonts, titles and the like).
To this end, the portlet markup should use Cascade StyleSheets (CSSs) [42]. CSSs per-
mit HTML fragments to parametrize some of its aesthetic aspects. The portlet returns
CSS-parametrized fragments which are then processed by the portlet consumer. This
process includes providing the actual values for the CSS parameters. Interoperability
requires these parameters to be standardized so that the portal can expect always the
same terms regardless of how is the portlet producer. This has also been achieved by
the WSRP endowment.

Portlet preferences. A portlet preference is a named piece of string data that
serve to personalize the portlet. As an example, go back to our flightSearch portlet.
Its preferences can include arrivalAirport with values “San Sebastián”, “London” or
“New York”, and departureAirport with values “Madrid”. These preferences offer a
parametrization-based mechanism to adapt the portlet (in this case, the input forms).
These preferences can be changed at configuration time (by the portal administrator)
or at enactment time. In this latter case, values can be set by the portlet itself -based on
the user profile- or prompting the current user.

3 Outline: developing an eXo portal as an instance of
the MDD development process

MDD strives to separate platform independent design from platform specific imple-
mentation and, in so doing, delaying as much as possible the dependence on specific
technologies. The idea is creating distinct (meta) models of a system at different levels
of abstraction. Then, transformations are applied that eventually produce code. Hence,
code programming is substituted by modeling and transforming. Consequently, MDD
focuses on the construction of models, specification of transformation patterns, and
automatic generation of code. And, the software development process is regarded as a
pipeline of model transformations that eventually leads to a complete application.

Models. The best-known MDD realization is the Model-Driven Architecture (MDA)
of the OMG [29]. MDA suggests building computational independent models (CIMs),
platform independent models (PIMs), and platform specific models (PSMs) corre-
sponding to different levels of abstraction or viewpoints. The computational inde-
pendent viewpoint focuses on the environment of the system, and the requirements that
stakeholders put on the system (details on the structure and processing are hidden or yet

6

www.manaraa.com

undefined). The platform independent viewpoint focuses on the operation of the appli-
cation while ignoring the details for a particular technological infrastructure. However,
it specifies a complete, although abstract, application. Finally, the platform specific
viewpoint refines the platform independent viewpoint by adding the characteristics for
a specific platform.

This work focuses on PIMs and PSMs for portlet-based portals. To this end, three
metamodels are introduced, namely,

• WSRP model, which is a PSM model of the interfaces defined by the WSRP
standard,

• SOP model, which is a PIM model that promotes a service-oriented architecture
also for portals. The notion of perspective is used to separate the specification
of the portal along three distinct concerns, namely: the TASK model, the OR-
CHESTRATION model and the RENDERING model,

• EXO model, which is a PSM model for the eXo platform, better said, a view on
the implementation details of relevance for this work.

These metamodels are described in more detail in sections 4, 5 and 6, respectively.

Type Complexity Approach Execution Techniques

Identify portlets – – – manual –

Get WSRP model code to PSM simple metamodel automatic RubyTL

Transf. from portlets to tasks PSM to PIM simple metamodel automatic RubyTL

Get orchestration skeleton PIM to PIM simple metamodel automatic RubyTL

Complete orchestration model PIM to PIM simple – manual –

Get rendering skeleton PIM to PIM simple metamodel automatic RubyTL

Complete rendering model PIM to PIM simple – manual –

Model merging PIM to PIM simple metamodel automatic RubyTL

Transf. into eXo model
PIM to PSM

PSM to code
merge metamodel automatic RubyTL

Table 1: Characteristics of model transformations in the SOP MDD process.

Transformations. Model transformation is the process of converting one or more
models (a.k.a. source models) to one output model (a.k.a. the target model) of the
same application [29]. Transformations are classified in automatic, semi-automatic and
manual, based on the involvement of the designer during model transformation (for a
complete account of transformation types refer to [8]). A transformation is automatic if
it does not require user involvement. The transformation is semi-automatic if it is up to
the designer to determine which elements of the source model will be transformed, and
manual if the designer produces the results. Obviously, much effort should be being
devoted to obtain automatic model transformations that generate complete applications
without user involvement.

7

www.manaraa.com

Figure 2: The SOP process.

Table 1 outlines the distinct transformations used in this work along the character-
istics introduced in [22, 29]. Model transformations can be of type CIM to PIM, PIM
to PIM, PIM to PSM, PSM to PIM and PSM to code. Our work use extensively PIM to
PSM transformation. However, it is also possible a bottom-up approach where exist-
ing components or legacy systems are wrapped, and abstracted into higher models to
be then integrated into more complex applications [26]. In our opinion, SOA also re-
quires this PSM to PIM transformations to abstract from service descriptions into UML
models that can be later integrated to achieve broader functionalities through service
orchestration. Portlets as front-end Web services, use this approach to abstract away
the WSRP interface specification. This allows to integrate also non-compliant WSRP
portlets. Additionally, transformations can be also classified as simple or merge based
on the number of source models involved in the mapping process. ’Transformation into
eXo model’ is an example of a merge transformation with two source models: SOP and
WSRP.

In order to describe the transformations, MDA proposes the use of the Query/Views/

8

www.manaraa.com

Transformations Specification (QVT) [30]. However, to the best of our knowledge, cur-
rent QVT implementations can not yet deliver the expressiveness required for some of
the transformations described in this paper. Hence, we finally used RubyTL [38], a
powerful, pattern-based transformation language based on Ruby [41]. Section 7 pro-
vides the details.

The MDD process. MDD conceives development as transformation chains where
the artifacts that result from each phase must be models. SPEM (Software Process
Engineering Metamodel) is a notation for defining processes and their components
whose constructs are described in UML notation [32]. In MDD terms, SPEM is a
metamodel for process modeling. Hereafter, SPEM terminology is used to specify the
milestone, roles and dataflow that goes with producing an eXo portal from a set of
WSRP-compliant portlets through a chain of model transformations (see Figure 2).

First, four distinct ProcessRoles are introduced: the transformer as such (i.e. a
set of rules for model mapping); the task designer, which is responsible for determin-
ing the portlets to be integrated; the orchestration designer, which defines how tasks
are interwined; and the rendering designer, which focuses on the look-and-feel of the
portal.

These roles collaborate along two main WorkDefinitions: modelization and eXo-
Generation. This work views Web portals as integration platforms built upon existing
portlets i.e. portlets are already there when the portal is being designed. Hence, mod-
elization starts by taking a textual description of the WSRP interfaces of the available
portlets, and producing the TASK model that extracts only those features that are rele-
vant during design.

Next, this TASK model is used to obtain a first skeleton of the ORCHESTRATION
model with the basic milestone of the orchestration. This template is subsequently en-
riched with flow dependencies by the orchestration designer. This ORCHESTRATION
model serves in turn to produce a first template of the distinct decorators to be faced
during the specification of the RENDERING model. This template is then filled up by
the rendering designer with appropriated aesthetic parameters.

Once the three perspectives are completed (i.e. TASK, ORCHESTRATION and
RENDERING), they are integrated into the SOP model which constitutes the main
workProduct of the modelization process. This SOP model is used to validate the
interaction of the distinct perspectives as well as to check the correctness of distinct
portal constraints (see next sections for details).

Finally, during the eXoGeneration process, the SOP model is automatically trans-
formed into an EXO model which is later used to generate the eXo code . Interesting
enough, this final transformation also takes as input the WSRP model which contains
implementation details about how portlets can be deployed.

Next sections introduce the details of the models and transformations.

4 The WSRP model: a PSM for the WSRP interfaces
WSRP [28] standardizes the programmatic interfaces for portlets. Besides method sig-
natures, WSRP 1.0 standardizes window states, CSS classes for portlet rendering, P3P-
based user profile description, etc. For the purpose of this work it is important to note

9

www.manaraa.com

that WSRP 1.0 treats portlets as isolated entities where interoperation between portlets
occurrs beneath the GUI interface (e.g. sharing some data common to two portlets
by using the so-called “portlet application”)[9]. However, a new version, WSRP 2.0,
introduces an event-based mechanisms where portlets can subscribe to events being
generated by other portlets. This enhancement is not considered in this work where
portles are treated as isolated components.

Figure 3: The WSRP metamodel.

For the purpose of this work, a metamodel is defined for WSRP portlet descriptions
(see Figure 3). This metamodel builds upon the OASIS ebXML Registry specifications
for WSRP. This ebXML [27] defines a framework for global electronic business that
will allow businesses to find each other and conduct business based on well-defined
XML messages. A key ingredient of this framework is the ebXML Registry Infor-
mation Model where organizations can describe their profile (the so-called Collabora-
tion Protocol Profile), and offerings can be canonically described. Recently, portlets
have been added as one of these offerings. To this end, metadata about the Portlet de-
scriptions as well as the actual Producer Service Implementation WSDL needs to be
published. Specifically, [3] proposes a way to publish of the following major WSRP
artifacts: (1) WSDL description for a WSRP Producer service (2) metadata describing
a Producer service and the Organization provides it (optional), and (3) metadata de-
scribing one or more WSRP Portlets hosted within Producer services (optional). For
our purpose, Figure 3 just focuses on the latter. It represents the set of portlets and their
description.

4.1 A WSRP model for the sample case
As an example, the following portlets are available1:

• the IEEESearch portlet, which comprises a subset of the functionality of the
IEEE portal;

1Disclaimer: the portlets used in this paper were implemented as wrappers of third-party sites. They are
used only for illustrative purposes, and not for commercial advantage.

10

www.manaraa.com

• the ACMSearch portlet, which covers part of the offering of the portal.acm.org
for the ACM organization;

• the CiteSeerSearch portlet, which includes the functionality for author searching
at citeseer;

• the DBLPSearch portlet, which embodies the functionality for author searching
at Ley’s site;

• the DeliciousStore portlet, which provides the functionality available at del.icio.us
for keeping track of references found in the Web;

• the ISIWoK portlet, which permits to obtain distinct quality parameters of a jour-
nal (e.g. impact factor) or paper through the ISI Web of Knowledge portal.

The portlets could have been developed in house, bought from third-party providers or
generated from existing Web application using wrapping techniques [11], as it is the
case for this sample problem.

5 The SOP model: a PIM for portlet-based portals
Portal development platforms conceive portals as a compound of different types of ar-
tifacts (e.g., containers, content pages and portlets) where implementation depends on
the vendor at hand. We depart from this vision and conceive portals as "universal inte-
gration mechanisms" where an increasing amount of their content comes from outside
the portal itself. This brings a service-oriented perspective to portal conception where
the portal is no longer perceived as a set of pages but as an integrated set of services.

Figure 4: The SOP metamodel.

This vision is realized through a PIM where the notion of portal and portlet are
abstracted into the notion of workspace and task, respectively. A portal defines a
workspace, i.e. a compendium of front-end tasks which are realized as portlets. For
the purpose of this paper, portal modeling implies three viewpoints (see Figure 4):

11

www.manaraa.com

• the TASK model, which describes the functionality, i.e. the set of tasks, that the
portal will offer.

• the RENDERING of the portal, i.e. layout and aesthetic considerations which
include addressing how tasks are distributed both among pages and within a
page.

• the ORCHESTRATION of the portal, i.e. the order in which tasks are being made
available to the end user.

5.1 The TASK metamodel

Figure 5: The TASK metamodel.

This model captures the portal as a workspace that aggregates the set of tasks that the
portal will offer to the users (see Figure 5).

A TASK model for the sample case
The components in the WSRP model are abstracted as tasks. A backward transformer
would take WSRP descriptions as inputs and return the corresponding TASK model. It
is composed of six tasks whose names are IEEESearch, ACMSearch, CiteSeerSearch,
DBLPSearch, DeliciousStore, ISIWoK, derived from the names of portlets. This sets
the pieces for the Browsing portal.

5.2 The ORCHESTRATION metamodel
For the purpose of this work, orchestration describes how tasks are seamlessly aggre-
gated into the workspace. Broadly speaking, aggregation can be defined as the pur-
poseful combination of a set of artifacts to achieve a common goal. The peculiarities
of the artifact (i.e. text, Web services, portlets) influence the aggregation model. For
instance, Web Services have input/output parameters. Hence, Web service aggrega-
tion needs to address the role of parameters during aggregation (e.g. using semantic
approaches [35, 37]). By contrast, portlets do not have input/output parameters. In-
stead of delivering a data-based XML document, portlets deliver markup fragments
(e.g. XHTML) ready to be rendered by the portal. Moreover, portlets tend to be state-
full, and the interaction lasts for a whole session, rather than the simple request that
characterizes the one-shot interaction of Web Services.

12

www.manaraa.com

Figure 6: The ORCHESTRATION metamodel.

Based on the peculiarities of portals, we identify two main requirements for the
portlet aggregation model, namely:

• hypertext-like navigation style. Portlet aggregation should permit users to ex-
plore the portal content freely, by skipping among portlets if required. This does
not preclude that a more conducted process à la workflow could need to be en-
forced in some cases, but the free-surfing style should be predominant.

• front-end aggregation. Portlets do not return data structures but markup (i.e.
semi-structured documents where content and presentation are mixed together).
Therefore, aggregation should be achieved in how markups from distinct portlets
are arranged and sequentially presented. As an example, consider three portlets:
IEEESearch, ACMSearch and DBLPSearch. The portal designer wants to en-
force a precedence rule so that a DBLPSearch can not be requested till some
browsing has been conducted through either IEEESearch or ACMSearch. This
rule can be enforced in the back-end through some pre-conditions attached to
the DBLPSearch service or some workflow engine enforcing the flow depen-
dency. By contrast, a “front-end” approach relies on GUI widgets, e.g. disabling
the “DBLPSearch” button until either IEEESearch or ACMSearch are enacted.
Note that integration is not achieved at the back-end but via presentation widgets.

To accomplish these requirements, the Hypermedia Model Based on Statecharts (HMBS)
[14] is adapted for our purposes. The use of statecharts [18, 17] or their predecessors,
state-transition diagrams, is common for modeling hypermedia applications [14], Web

13

www.manaraa.com

service composition [2, 6] and reactive systems. A hypermedia system, and hence, a
portal, may be considered as a reactive system, since it must interactively attend to ex-
ternal events given in the form of user requests during browsing. Statecharts provide a
concise and intuitive visual notation as well as being rigorously defined with a formal
syntax and operational semantics.

Figure 7: Statechart of the Browsing portal.

Therefore, statecharts are used to define the orchestration. The statechart meta-
model proposed in the UML specification [31] is used as a base for the ORCHESTRA-
TION metamodel (see in Figure 6 a simplified version, which has been extended with
the notion of “state configuration”). Statechart extends the classical formalism of state
transition diagrams by incorporating the notions of hierarchy, orthogonality (concur-
rency), a broadcast mechanism for communication between concurrent components,
composition, and refinement of states. Specifically, an OR-type decomposition is used
when a state is to be decomposed into a set of exclusive substates, whereas an AND-
type decomposition is used to decompose a state into parallel, or orthogonal substates.
Each concurrent region in an AND state is delimited by a dashed row (for a gentle
introduction see [33]).

The statechart constructs are used to model the task flow. Simple states stand for

14

www.manaraa.com

atomic tasks (those defined in the TASK model). Tasks available simultaneously con-
form more abstract AND states, whereas alternative tasks are enclosed into OR states.
Both AND and OR states can be successively nested till all tasks are enclosed in a root
state which is the counterpart of the workspace (i.e. portal) itself.

Transitions permit to move among states when an event arises, provided the asso-
ciated condition is met. Conditions permit to personalize orchestration based on the
user profile (e.g. whether the user is a student or a lecturer) or the navigation trace
(whether a given state has already been visited or not). Here, the former is addressed
by permitting conditions on the user profile.

An ORCHESTRATION model for the sample case
From a workspace perspective, tasks are simple states: you are either visualizing the
task or you are not. These tasks can be arranged along a flow as illustrated in Figure 7
for our sample tasks. The portal designer initially considers two states: you are either
searching for something on the Web, or you are storing your finding in del.icio.us. At
any time, you can move to the ISIWoK task to consult the impact of a specific paper.

Search is an abstract state which contemplates two situations: searching for a paper
or searching for an author. Papers in turn can be located at either IEEE or ACM. These
options are simultaneously available as denoted by the AND state (i.e. dotted line). On
the other hand, author information can be obtained through either the CiteSeerSearch
task or the DBLPSearch task. Both tasks are also simultaneously available (but in this
case, because of the condition in the statechart, CiteSeerSearch is only available if the
user’s department is LSI). Of note, the ToDelicious transition is only available for users
of the LSI department. Therefore, DeliciousStore is only reachable for users with this
profile.

Figure 8: Presentation counterpart of the state configuration {Browsing, Search, Pa-
perSearch, IEEESearch, ACMSearch}.

For the purpose of this work, it is important to recall the notion of state configu-

15

www.manaraa.com

ration, i.e. the set of currently active states of the statechart [18]. Basically, a state
configuration comprises one simple state, or more, and its container states, on the un-
derstanding that OR substates can not be simultaneously active, and AND substates
can be simultaneously active, as long as their container states remain also active. For
example, the state configurations for the statechart at Figure 7 are:

• configuration1: {Browsing, ISIWoK}

• configuration2: {Browsing, DeliciousStore}

• configuration3: {Browsing, Search, PaperSearch, IEEESearch, ACMSearch}

• configuration4: {Browsing, Search, AuthorSearch, CiteSeerSearch, DBLPSearch}

The importance of state configurations rests on being the PIM counterparts of portal
pages (transformations will make this explicit). For our sample problem, Figure 8
shows the presentation counterpart of configuration3. The details of this transformation
are given at section 7.

Figure 9: The RENDERING metamodel.

5.3 The RENDERING metamodel
The orchestration viewpoint is complemented by the rendering viewpoint. The render-
ing counterparts of the orchestration primitives, i.e. state machine, simple states and
transitions, are workview, windows and anchors, respectively (see Figure 9). Addi-
tionally, the RENDERING metamodel contributes with the helpingText construct, a
construct to complete the information shown in the portal in order to help users using
it. The RENDERING model will indicate how those constructs are distributed and
decorated along the display area. To this end, layout and style parameters are used.

16

www.manaraa.com

Style parameters are those of CSS. CSS files externalize presentation parameters
such as font family, font size, font style, color, background, border style, border width,
border color, etc. Among style parameters we include background-color, border-style
(values include none, dotted, dashed, and so on), border-color, border-width, font-
family, color (often referred to as the foreground color), font-size, font-style (values
include normal, italic and oblique), text-alignment (i.e. how text is aligned within the
element) and transition. The latter indicates how anchors are realized. The options
include button or helping text where the transition is achieved by clicking on the un-
derlined text. Except transition parameter, the rest of parameters, with distinct flavors,
can be found in most IDEs for portal development such as eXo [13], Oracle Portal [34]
or IBM’s Web Sphere [20].

As for the layout, it indicates how windows/anchors are arranged along a table-
like structure using the following parameters: distribution, indicates how to locate
anchors along the portal page, and options include together (i.e. anchors are all located
together, regardless of their transition counterparts) and detached (i.e. anchor A is
located beside window W if A stands for a transition that leaves from the state whose
counterpart is W); position, indicates whether anchors are placed at the top, bottom, left
or right of either the page (together) or the associated window (detached); alignment,
indicates how windows are rendered together (values are column, i.e one below the
other, and row, i.e. one by the other); banner/footer, it holds a banner/footer which is
kept constant along the workview.

Layout parameters are related to the overall portal, hence in the RENDERING
metamodel they are described as part of the WorkviewDescriptor, and style parameters
are attached to the distinct artifacts through WindowDescriptor, AnchorDescriptor and
HelpingTextDescriptor (see Figure 9).

The simplicity of this metamodel comes from the fact that portlets free the portal
designer from most of the burden related with rendering concerns. The reason is two-
fold. First, a portal’s primary function is to provide an entry to content already available
elsewhere, not acting as a separate source of information itself. And second, these
external sources of information are portlets which already convey how this information
is presented. Unlike traditional Web Services, portlets deliver markup ready to be co-
located into the portal’s page. Hence, the RENDERING model needs just to focus on
the relationship among states and transitions, leaving outside what happens when in a
given state .

According to the metamodel in Figure 9, the rendering of a workview is gener-
ated from an aggregate of descriptors. But this does not mean that the designer has
to set a descriptor for each of the orchestration constructs (states and transitions). In-
deed, ensuring a common look-and-feel throughout the portal pages is one of the main
concerns for the portal designer to improve usability and the user experience. To this
end, skins are used, i.e. templates defined at the portal level that set some presentation
properties that are then "inherited" by all the portal pages. Besides ensuring presenta-
tion homogeneity, this mechanism accounts for maintainability as (some) changes in
the presentation uniquely involve updating the skin rather than modifying the distinct
pages.

However, the use of skins in current platforms can be too coarse grained, i.e. skins
are defined at either the portal or the page level. There is nothing in between. For

17

www.manaraa.com

large portals where pages can be grouped into clusters based on content or functional
grounds, finer grained skins could be most convenient. To this end, we introduce the
notion of "state skin" as a descriptor associated to a state.

The idea is to use the containment hierarchy provided by state diagrams (i.e. the
relationship between a state and its substates) to specify the rendering in a stepwise
manner. Rather than attaching descriptors to simple states, this work proposes the
rendering-descriptor inheritance: now a descriptor can also be associated with any
AND or OR state, and its scope includes all contained substates. That is, a descriptor
for state S affects any widget associated with any substate directly or transitively below
S. Moreover, a rendering parameter value (e.g. fontSize =12pt) is overridden if newly
defined in the descriptor of a substate. These descriptors are called state skins. State
diagrams that incorporate state skins are referred to as annotated statecharts.

This approach offers the generality required to provide a common look-and-feel
along the portal, while at the same time addressing specificities of certain tasks or
task clusters where presentation singularity is sought. Traditional skins correspond
to rendering parameters defined for the upper state (e.g. Browsing) whereas it is still
possible to completely override this skin for a particular simple state (e.g. IEEESearch).
The next subsection illustrates this approach for the running example.

An important note. Strictly speaking, style and layout parameters are closer to PSM
concerns than to PIM ones. Indeed, a proper rendering PIM should provide some gen-
eral guidelines that are later mapped into CSS-like parameters. As stated in [16] “many
of the usability problems can be addressed automatically. For example the navigation
scheme of a Web Application can be provided automatically based on general guide-
lines given by the modeler. Of course, a solution at this level of abstraction can only be
applied to a small subset of existing problems and therefore it should be easy and fast
to come up with alternatives or extensions for the code generation templates”. Here,
the transformation hides the guidelines to map from the PIM rendering constructs to
the platform-specific CSS-like constructs.

However, guidelines are distilled from experience, and we do not have enough
acquaintance to provide those rendering guidelines yet. To move rendering parameters
up is then a temporal solution till enough experience is collected that permits to abstract
away from CSS-like parameters.

18

www.manaraa.com

A RENDERING model for the sample case

Figure 10: States and their rendering counterpart.

Figure 10 specifies the RENDERING model for the Browsing statechart. For the sake
of clarity, related to each rendering construct the figure also shows its corresponding
state of the ORCHESTRATION model (the states are shown in a different shape). The
root state, Browsing, holds the portal skin where the font type and size for display-
ing portlet information is set to times and 12pt, respectively, in the WindowDescriptor.
Of note, the IEEESearch skin redefines these parameters to courier and 14pt, respec-
tively. More to the point, the Browsing skin sets that anchors must be together (in the
WorkviewDescriptor) and shown with a solid 5px border-line and in an italic font-style
(in the AnchorDescriptor). This specification is overridden by the PaperSearch skin
and set to a dotted 7px border line. The rest of the states without skin description
inherit rendering guidelines from the root skin. The portal page for the state configura-
tion3 is shown in Figure 8.

19

www.manaraa.com

Figure 11: Piece of another alternative RENDERING model.

Figure 12: Alternative presentation counterpart of the state configuration {Browsing,
Search, PaperSearch, IEEESearch, ACMSearch}.

RENDERING and ORCHESTRATION models are orthogonal. That is, the very
same ORCHESTRATION model can be presented along distinct skins to better fit the
user profile, and the other way around, the same skin can be used for distinct OR-
CHESTRATION models. The former situation is illustrated for the running example.
The statechart in Figure 7 can have two alternative RENDERING models, namely,

20

www.manaraa.com

those shown in Figure 10 and Figure 11 (for the sake of clarity, only different values
are shown). In the latter case, the portal page related to the configuration3 would have
been as shown in Figure 12. Anchors are detached in different rows, and in normal
12pt font with a border line thinner than before. Moreover the portal does not show
any helping text.

6 The EXO model: a PSM for the eXo platform
According to the official eXo site (www.exoplatform.com), this platform was the first
portlet container to be JSR168 certified in 2003, and it is currently one of the most
popular, freeware portal frameworks. This work is based on eXo version 1 [12].

Figure 13: A sample eXo portal page.

An eXo portal is a compound of four main types of artifacts: the portal itself,
pages, containers and portlets. A portal encompasses a set of pages which in turn, hold
containers, which finally, keep the portlets. Figure 13 shows how an eXo page looks
like.

A page is conformed along two directives: the portal template and the page content.
The former specifies a layout in terms of rows and columns. A common pattern is
depicted in Figure 13: a banner, a footer, a navigation tree (an index to the main portal
pages), and the page content. Whereas the portal template is shared by all pages, the
page content is specific for each page. It is also described through a set of nested rows
and columns where each cell contains a portlet. In this way, the page content is built up
by aggregating the presentation of the contained portlets. A page content is bound to
one or several nodes of the navigation tree. By clicking on these nodes, the user moves
along the distinct page contents.

21

www.manaraa.com

Figure 14: The EXO metamodel.

22

www.manaraa.com

Both the portal template and the page content are specified as XML files, namely
(see Figure 14):

• **-config.xml, which describes the portal template, e.g. whether the portal has
banner, footer, or does not have, or how portlets are to be arranged in rows or
columns. The root element of this file is PortalConfig which contains a Portal-
Layout. From then on, the layout is described in a tree-like way as a containment
hierarchy where the leaves of the hierarchy are either portlets or a body (i.e. a
kind of canvas that holds page content).

• **-pages.xml, which describes the set of page contents. They sit at the bottom
of the layout hierarchy. A page content can in turn hold other containers and
portlets.

• **-navigation.xml, which describes the hierarchical relationship among the page
content, i.e. which other pages are reachable when in a given page content. This
basically defines the “navigation tree” shown on the left of Figure 13.

The previous files describe the layout. Aesthetic parameters (e.g. color, fonts, etc) are
set through decorators. Since a portal is a compound of four main types of artifact
(i.e. the portal itself, containers, pages and portlets), a decorator is defined for each
type of artifact: portlet decorators, container decorators, page decorators and portal
decorators. Moreover, portlet’s fragments can also be the subject of special CSS which
are known as “portlet styles”. Therefore, presentation wise, a portlet presentation is
governed by the decorator (i.e. the component that surrounds the portlet body) and
the portlet style, the latter guides the presentation of the fragments (i.e. the markup
rendered by the portlet) (see Figure 13). The aesthetic of the portal is then set through
skin-config.xml file and some CSS files. The former describes the decorators and the
others contain values of the style parameters.

The information rendered to the user depends on both the user role and the por-
tal state. The user configuration of an eXo portal is described in the organization-
configuration.xml file. This file defines the preconfigured groups and users, and the
relationships among them. All the layout, content and navigation can be personalized
based on the user profile. To this end, distinct files **-config.xml, **-pages.xml and **-
navigation.xml can be provided in a user basis. Actually, “**” stands for the username
(e.g. john-config.xml).

We have described the specification of all those files in the EXO metamodel (see
Figure 14), with one subpackage for each file type.

23

www.manaraa.com

7 Transformation definition

Figure 15: Presentation counterpart of the state configuration {Browsing, ISIWoK}.

Model transformation is the process of converting one or more models, called source
models, to one output model, i.e. the target model, of the same system [29]. Model
transformation languages are used to specify the mapping between constructs of the
source models into constructs of the target model along the so-called transformation
pattern [5]. This section illustrates this pattern where the annotated statechart and
the eXo platform play the role of the source and target models, respectively. Broadly
speaking, the transformation engine takes a statechart as an input, works out its state
configurations and finally, outputs a set of pages conforming the eXo portal. Figures 15
and 8 depict the eXo pages for configuration1 {Browsing, ISIWoK} and configuration3
{Browsing, Search, PaperSearch, IEEESearch, ACMSearch}, respectively.

Transformations express a correspondence between elements of the source model
into elements of the target metamodel. Yet, this correspondence is frequently not
unique but distinct ways can exist to map the same source model into alternative target
models. Specifically, statecharts can be mapped into eXo constructs in two different
ways: the interpreted approach and the compiled approach.

The interpreted approach simulates the dynamics of the statechart through a stat-
echart engine code which obtains the portal page on demand. Specifically, at a given
moment, the portal is presenting a Web page which corresponds to the current state
configuration. When a user rises a GUI event (e.g. by clicking on a link), the portal
transmits it to the transition associated to the triggered event. Then, the corresponding
guard condition is evaluated, and if satisfied, the statechart sets the target state as ac-
tive, which in turn, leads to a new state configuration. This new configuration sets the
portlets to be displayed, and a new page is generated in accordance with the associated

24

www.manaraa.com

state skins. This page is finally rendered back to the user, and this ends the loop. How-
ever, this approach happens to suffer from efficiency problems for large statecharts. A
main issue is that the test for activated transitions is time-consuming, and should be
workout time and again as the user navigates throughout the portal.

By contrast, the compiled approach, works out all the pages at generation time. A
Web page is generated from each state configuration, where the page anchors corre-
spond to the transitions available to this state configuration. This approach improves
efficiency as generation does not happen at portal enactment time. It also provides a
more akin solution to current eXo development practices where users are accustomed
to the so-called “navigation tree”, an index to the main portal pages. On the downside,
the compiled approach prevents some adaptation from taking place at run time (e.g.
some transitions can depend on some execution parameters such as the price of ticket
just bought). This section focus on the compiled approach.

Transformation wise, a main challenge is the containment structure of statecharts:
a state can contain lower-level states. Specifically, state configurations are not given by
the designer but need to be worked out by the transformer itself. This implies recursive
transformation rules that traverse the tree-like structure of the statechart. At the time
of the implementation, popular transformation languages such as QVT [30] were not
expressive enough to specify the required transformations, and we finally used RubyTL
[38] as the transformation language.

Based on Ruby, RubyTL [38] is a domain-specific language for the domain of
model transformations. It is a hybrid language that provides both declarative and im-
perative constructs to specify transformation definitions. A RubyTL rule includes the
following clauses:

• from, where the constructs of the source metaclasses are indicated,

• to, where the constructs of the target metaclasses are specified,

• filter, which holds a condition over the source constructs for the transformation
to be enacted

• mapping, which states binding relationships between source and target model
constructs. A binding is a kind of assignment that indicates what needs to be
transformed into what, instead of how the transformation must be performed.

task constructs orchestration constructs rendering constructs eXo files
rule1 state windowDescriptor ****.css
rule2 task state-configuration workviewDescriptor **-pages.xml

Table 2: Mapping SOP constructs to eXo files through distinct transformation rules.

The SOP-to-EXO mapping is fully implemented along 69 mapping rules. Next
subsections provide a sample for two representative rules which generate a CSS file
and an “eXo page” file, respectively (see Table 2).

25

www.manaraa.com

7.1 Mapping from simple states to CSS classes

top_rule ’StateMachine2CssClassSet’ do
from SOP::Orchestration::StateMachine
to EXO::Css::CssClassSet
mapping do |state_machine, class_set|

class_set.name = state_machine.workspace.name
class_set.styles = [state_machine.root_state] + state_machine.simple_states
class_set.decorators = [state_machine.root_state] + state_machine.simple_states
....

end
end
rule ’SimpleState2Style’ do

from SOP::Orchestration::State
to EXO::Css::PortletStyleClass
filter { |state| state.isSimple }
mapping do |state, stylePortlet|

stylePortlet.name = state.name + "PStyle"
stylePortlet.fontFamily = state.windowDescriptor.fontFamily
...

end
end
rule ’SimpleState2Decorator’ do

from SOP::Orchestration::State
to EXO::Css::PortletDecoratorClass
filter { |state| state.isSimple }
mapping do |state, decorator|

decorator.name = state.name + "PDecorator"
decorator.background = state.windowDescriptor.background
...

end
end
...

Figure 16: Mapping from simple state to decorator and style CSS classes in RubyTL.

Figure 16 depicts the StateMachine2CssClassSet rule. This rule takes as an input a
StateMachine from the SOP metamodel (specifically, from the ORCHESTRATION
subpackage of the SOP metamodel, see Figures 4 and 6) and returns a CssClassSet
element from the EXO metamodel (see Figure 14). That element represents a CSS file,
which governs portlet presentation.

Portlet presentation includes the portlet markup itself and the decorator surround-
ing this markup (see Figure 13). The style guidelines for presenting the markup and
the decorator are set through CSS classes, specifically, the PortletStyleClass and the
PortletDecoratorClass, respectively (see Figure 14). These classes are obtained from
the state skins distributed all along the state hierarchy.

The first rule has three bindings. The first binding uses the workspace associated
to the root state of the statechart in order to name the CssClassSet element (remem-
ber, this element stands for the CSS file to be generated). The next two bindings are
resolved by the execution of the SimpleState2Style and SimpleState2Decorator rules,
respectively. The rules are implicitly invoked through a mechanism similar to XSLT
templates but now, the matching is based on metamodel types rather than XML tags.
Hence, the assignment “class_set.styles=...state_machine.simple_states” triggers the
rule SimpleState2Style for each simple state. This rule creates the style CSS class
for the portlet counterpart of state: the name is obtained after the state name adding

26

www.manaraa.com

“PStyle” as a suffix, whereas the CSS attributes (e.g. fontFamily) are taken from the
WindowDescriptor of the corresponding state skin.

It is most important to note that the hierarchical definition of state skins permits a
given state to have a partial definition (or no definition at all) for its state skin. The
complete definition is obtained at transformation time by obtaining missing properties
from their ancestors. For instance, ACMSearch does not have any associated state skin
whereas IEEESearch only provides the fontFamily (courier) and the fontSize (14pt) (see
Figure 10).

.IEEESearchPDecorator-decorator {
background: white;
border-style: dotted;
border-color: blue;
border-width: 4px;

}
.IEEESearchPStyle-portlet {

font-family: Courier;
color: black;
font-size: 14pt;
font-style: normal;
text-align: justify;

}
.ACMSearchPStyle-portlet {

font-family: Times;
color: black;
font-size: 12pt;
font-style: normal;
text-align: justify;

}

Figure 17: Snippet of browsing.css file.

However, eXo forces to have full-fledged IEEESearchPStyle and IEEESearchPDec-
orator CSS classes. Therefore, the missing attributes are recursively obtained by look-
ing up to the upper states that contain the IEEESearch state, where attributes at the up-
per states are overridden by lower states. The outcome for these two states is shown in
Figure 17. Implementation wise, a helper function is defined that supports this look-up
process (e.g. windowDescriptor). Hence, the expression state.windowDescriptor.fontFamily
found in these rules, recovers the fontFamily value for the current state regardless of
whether the font is locally attached to the state or “inherited” from upper levels.

27

www.manaraa.com

7.2 Mapping from state configurations to eXo pages file

phase ’page’
parameter :configuration
parameter :page_set
rule ’Configuration2Page’ do

from SOP::Orchestration::StateConfiguration
to EXO::Pages::Page
filter { |conf| conf == configuration }
mapping do |configuration, page|

page_set.pages = page
(1) page.name = "/" + configuration.page_name

... <assignment of constant values>
(2) page.decorator = configuration.state_machine.workspace.name + "PageDecorator"
(3) page.container = configuration
(4) page.container = configuration.state_machine.child_states.select { |s| s.isOrthogonal }
(5) page.portlet = configuration.state_machine.child_states.select { |s| s.generate_portlet? }.

select { |s| configuration.states.include?(s) }
end

end
rule ’AndState2Container’ do

from SOP::Orchestration::State
to EXO::Pages::Container
filter { |state| configuration.states.include?(state) && state.isOrthogonal }
mapping do |state, container|

container.renderer = state.windowDescriptor.containerRenderer
(6) container.decorator = state.state_machine.workspace.name + "TransparentDecorator"
(7) container.subcontainers = state.child_states.select { |s| s.isOrthogonal }
(8) container.portlets = state.child_states.select { |s| s.generate_portlet? }.select { |s| configuration.states.include?(s) }

end
end
rule ’SimpleState2Portlet’ do

from SOP::Orchestration::State
to EXO::Pages::Portlet
filter { |state| state.isSimple }
mapping do |state, portlet|

portlet.renderer = "PortletRenderer"
portlet.decorator = state.name + "PDecorator"
portlet.windowId = "#{state.task.portlet.displayName}/#{state.task.portlet.portletName}/#{state.name}"

...
end

end
rule ’Container4Transitions’ do

from SOP::Orchestration::StateConfiguration
to EXO::Pages::Container

(9) filter { |configuration| configuration.state_machine.workviewDescriptor.distribution==”together”}
mapping do |configuration, container|

container.renderer = "ContainerColumnRenderer"
container.decorator = configuration.state_machine.workspace.name + "TransparentDecorator"

(10) container.portlets = configuration.states.map { |s| s.source_of_transition }.flatten
end

end
rule ’Transition2Portlet’ do

from SOP::Orchestration::Transition
to EXO::Pages::Portlet
mapping do |transition, portlet|

portlet.renderer = "PortletRenderer"
portlet.decorator = transition.state_machine.workspace.name + "AnchorDecorator"
portlet.portletStyle = transition.state_machine.workspace.name + "AnchorStyle"
portlet.windowId = transition.portlet.displayName + "/" + transition.portlet.portletName + "/" + transition.name +

TransitionId.next.to_s
...

end
end

...
end

Figure 18: Mapping from state configurations to eXo pages file. Anchor rendering
strategy is together and top.

28

www.manaraa.com

explicit_execution do
(11) SOP::Orchestration::StateMachine.all_objects.each do |state_machine|
(12) page_set = EXO::Pages::PageSet.new
(13) state_machine.all_configurations.each |configuration|
(14) execute_phase ’page’,

:configuration => configuration,
:page_set => page_set

end
end

end

Figure 19: Mapping from state configurations to eXo pages file. (cont.)

As stated previously, this work uses a compiled approach to transform statecharts to
eXo pages, i.e. an eXo page is generated from each state configuration rather than
constructing the page dynamically at run time. This transformation is outlined in two
figures, 18 and 19, for the sake of legibility.

The transformation starts in line (11) of Figure 19 and takes a SOP::Orchestration::StateMachine
as input (i.e. a StateMachine element of the ORCHESTRATION viewpoint or sub-
package in the SOP metamodel) and returns an EXO::Pages::PageSet as output (i.e. a
PageSet element of the Pages subpackage in the EXO metamodel). Line (12) creates
new pageSet object.

Line (14) introduces a phase. A phase is a parametrized transformation module that
groups a set of related rules. This mechanism is used to group those rules that account
for the PIM notion of configuration. Specifically, the page phase in Figure 18 has a
configuration as its IN parameter, and returns an IN-OUT parameter named page_set
that holds the PageSet object. This phase is enacted for each state configuration. To this
end, the all_configurations function (in line (13)) works out all possible state configu-
rations from the statechart model. For each configuration, the page phase is explicitly
executed (in line (14)), passing the current configuration as its IN parameter.

The page phase starts with the implicit triggering of its first rule, i.e. Configura-
tion2Page rule (see Figure 18). Again the tree-like structure of configuration leads to a
recursive transformation. First, a new page is created: its name and decorator are gen-
erated in lines (1) and (2), respectively, and it holds the results of transforming the child
states. If the child is simple (and not contained in an AND state) then, a portlet is gen-
erated (line (5) that causes the triggering of the SimpleState2Portlet rule). If the child
is an AND state then, a container is generated (line (4) that causes the triggering of the
AndState2Container rule) whose content is the result of recursively transforming their
child substates (line (7)). Finally, OR states have no impact on the page composition,
and the transformation just propagates to their children.

That is for states. Now transitions whose PSM counterparts are anchors. Accord-
ing with the RENDERING metamodel, active anchors can be placed either together
(distribution = ’together’) or side-by-side to the portlet being the PSM counterpart of
the transition’s origin state (distribution = ’detached’). Orthogonally, depending on
the position attribute value, anchors can be place left, right, up or down relative to the
page/portlet. This leads us to eight different types of transformations. In Figure 18, the
example considers the ’together’/’top’ combination only: the Container4Transitions
rule is triggered to generate the container (in line (3), before the rules related to states;
moreover that rule has an appropriate filter in line (9)), and after, one anchor is de-

29

www.manaraa.com

scribed for each transition, i.e using the Transition2Portlet rule triggered in line (10)
with the binding. Of note, rules for the detached case are also recursive as anchors are
placed along the containers hierarchy.

Figure 20: Configuration3 and its presentation counterpart.

As an example, consider configuration3 whose active states are {Browsing, Search,
PaperSearch, IEEESearch, ACMSearch}. Figure 20(a) shows the containment relation-
ship between these states, indicating the kind of relationship (i.e. AND, OR). Trans-
formation proceeds from top to bottom and Figure 20(b)2 shows the generation of the
presentation counterpart that results from this state configuration whose complete pre-
sentation page is shown in Figure 8.

The process goes as follows:

1. the root, i.e. Browsing state, outputs a container that provides a first skin for the
portal (lines (1) and (2) in Figure 18). Moreover, since anchors have a together
distribution and a top position, PSM anchors are displayed at this very top deco-
rator (line (3) of Figures 18 and 20(b)). This container also holds the results of
transforming the Browsing’s child, i.e. Search state.

2Numbers in Figure 20(b) point to operations in Figure 18. These operations generate the corresponding
PSM widgets.

30

www.manaraa.com

2. Search is an OR state. An OR state does not have a presentation counterpart, and
process continues with Search’s child, i.e. PaperSearch.

3. PaperSearch is an AND state. An AND state is mapped to a transparent deco-
rator (line (6)) that forces its content (generated after PaperSearch substates) be
displayed side-by-side. PaperSearch is a conjunction of two simple states (i.e.
ACMSearch and IEEESearch) which stand for two portlets (line (8)).

4. ACMSearch and IEEESearch are simple states. A simple state produces a refer-
ence to a PortletDecorator class and a PortletStyle class that hold CSS parame-
ters for portlet markup presentation (this is the SimpleState2Portlet transforma-
tion rule).

<page-set>
<page renderer="PageRowRenderer" decorator="browsingPageDecorator">
<name>/home</name>
<container renderer="ContainerColumnRenderer" decorator="browsingTransparentDecorator">

<portlet renderer="PortletRenderer" decorator="browsingAnchorDecorator">
<portlet-style>browsingAnchorStyle</portlet-style>
<windowId>@owner@:/navigationstep/step/ToAuthorSearch1</windowId>
<portlet-preferences>

<value>ToAuthorSearch</value>
...

</portlet-preferences>
</portlet>
...

</container>
<container renderer="ContainerRowRenderer" decorator="browsingTransparentDecorator">

<portlet renderer="PortletRenderer" decorator="IEEESearchPDecorator">
<portlet-style>IEEESearchPStyle</portlet-style>
<title>IEEE</title>
<windowId>@owner@:/ieeeLibrary/ieeeLibrary/IEEESearch</windowId>

</portlet>
<portlet renderer="PortletRenderer" decorator="ACMSearchPDecorator">

<portlet-style>ACMSearchPStyle</portlet-style>
<title>ACM</title>
<windowId>@owner@:/acmLibrary/acmLibrary/ACMSearch</windowId>

</portlet>
</container>

</page>
...

</page-set>

Figure 21: Snippet of the template-pages.xml file.

The final outcome for configuration3 is depicted in Figure 21. The content of
decorator and style classes has been previously generated by the transformation rule
introduced in subsection 7.1.

It is worth emphasizing that RubyTL is an embedded language in Ruby. The ben-
efits brought are illustrated in line (12) of Figure 19, where an object is explicitly cre-
ated, and in line (5) of Figure 18, where Ruby facilities to traverse collections are used.
Moreover, since RubyTL is a hybrid language, bindings and rules provide a clean way
to set the mappings in a declarative manner (e.g. in line (4)), while it is also possible
to write imperative code where needed (as shown in line (12)).

31

www.manaraa.com

8 Realizing the MDD benefits
Different papers address the advantages of MDD in general [36], and to Web develop-
ment, in particular [16]. Rather than going back to their arguments, this section tries
to provide examples of how these advantages turn true for the purpose of this specific
project.

It is commonly stated that a main advantage of MDD is to be able to react effi-
ciently and with low costs to technology changes. Although we are conscious about
the benefits of platform portability, our troubles do not come so much for technology
changes as for inefficient programming and maintenance. Our main motivation rests on
the important productivity and quality gains that the model+transformation paradigm
can yield as opposed to direct code programming. The rest of the section is devoted to
illustrate these gains based on the experience gained during this project.

Analysis. MDD treats models (e.g. statecharts) not just as documentation but as a
crucial part of the solution. From an analysis perspective, the main gains come from the
verification techniques that statecharts permit and that would have been much harder to
achieve if validation were conducted at the eXo-code level. PIM offers possibilities for
analysis, verification, optimization, parallelization, and transformation in terms of PIM
constructs that would be much harder or unfeasible if a programming language had
been used [24]. Indeed, statecharts have long being used as a simulation technique,
and distinct techniques and tools are available to validate distinct formal properties.

context SOP::Orchestration::State do
inv ’maximized-only-for-one-simple-state’ do
self.isOrthogonal.implies(

self.child_states.any? { |s| s.isSimple && s.task.portlet.windowState = = ’maximized’ }.
implies(self.child_states.select { |s| s.isSimple }.size = = 1))

end
end

Figure 22: Validation rule.

Additionally, portal-specific properties can also be declaratively specified as op-
posed to the convoluted description that an eXo implementation would require. The
window-state restriction is a case in point. This restriction states that a portlet with
a window state “maximized” must be shown alone in the portal page. The window
state is a WSRP property which is captured by the WSRP model. On the other hand,
the ORCHESTRATION model implicitly conveys how many portlets are shown si-
multaneously: if there is an AND state, all its substates must be rendered together.
Therefore, the window-state restriction can be stated as follows: IF the windowState
of the wsrp portlet related to one task is set to “maximized” AND this task pertains to
an “and” state THEN, the number of simple substates in that “and” state must be 1.
This constraint could be described in OCL in a declarative way. However, we did not
have an OCL engine to enforce this constraint, so a RubyTL rule counterpart was spec-
ified (see Figure 22). This constraint can now be validated against the portal model,
hence, detecting inconsistencies at design time. The important point to notice is that
this constraint could have been very cumbersome to enforce directly on eXo artifacts!!

Design. Transformations express a correspondence between elements of the source

32

www.manaraa.com

model into elements of the target metamodel. Yet, this correspondence is frequently
not unique but distinct ways exist to map the same source model into alternative target
models. These design options differ not so much in the functionality supported but
on the so-called non-functional features. For instance, when mapping statecharts two
options where considered: interpreted versus compiled. These options do not have a
major impact on the functionality of the system but they do affect non-functional char-
acteristics such as performance or extensibility (see 7). By using model+transformation
rather than direct coding, MDD captures as part of the transformations, the distinct de-
sign alternatives and, what is most important, the criteria to be used to prioritize one
over the others.

For instance, it could have been possible to go for the compiled alternative if the
number of state/transitions were above a certain threshold so that portal performance
does not suffer from large statecharts. By contrary, if the statechart did not reach this
number and it is likely to add new portlets (i.e. new simple states) then, the interpreted
option would be a better bet since the additional overhead of interpreting the statechart
is compensated by its facility to extend it right away. The important point is that now
these criteria are captured in a single place: the transformation.

Implementation. Using MDD practices, most code is generated and derived from a
model. This is especially beneficial in the presence of code clones, i.e. code fragments
repeated in source files of the application. This situation arises distinct times during
the eXo portal development. For instance:

• the same portlet can appear in distinct pages (i.e. an simple state can belong to
different state configurations). A page description (i.e. the template-pages.xml
file in Figure 21) includes the description of the portlets that form the page (i.e.
the <portlet> element). Therefore, the <portlet> element for the repeating port-
let is a code clone, i.e. it appears in each page description that renders this
portlet.

• portlets, better said, their corresponding simple states, can form higher abstrac-
tion units (e.g. IEEESearch and ACMSearch are abstracted into the PaperSearch
state). Those portlets that belong to the same abstraction unit can share some pre-
sentation parameters. As the notion of abstraction unit is missed in eXo, those
presentation parameters that provide the look-and-feel of the abstraction need to
be repeated for each portlet that realizes the abstraction unit. Likewise, other
characteristics of the abstraction (e.g. outcoming transitions) give also rise to
code clones being distributed all along the page descriptions in eXo.

Now more repetitive and error-prone activities are moved to the transformation rules
that focus most of the care and testing. Hence, the chances for implementation pitfalls
are reduced and development is streamlined.

33

www.manaraa.com

9 Related work

Data-intensive model Service-oriented model
Structural model Task model

Navigation space model Customized task model
Navigation structure model Orchestration model
Static presentation model Rendering model

Dynamic presentation model –implicit–

Table 3: Models for data-intensive portals vs. Models for service-oriented portals.

This paper is about integration in a Web setting. Integration can involve an underlying
database, external applications (a.k.a. back-end integration) or presentation compo-
nents (a.k.a. front-end integration). The former can be illustrated through work on
data-intensive Web applications [15, 7, 23], i.e. Web applications that run on top of
a back-end database system. These works normally start with a structural model of
the entities involved in the application which normally reflects the database entities.
Around this model, other models are introduced, namely, the navigation space model,
which indicates the object that can be visited by navigation through the application; the
navigation structure model, which defines a road map on top of the navigation space;
the static presentation model, which describes where and how navigation artifacts will
be presented to the user; and the dynamic presentation model, which addresses the
behavior of the presentational objects, i.e. the changes on the user interface when the
user interacts with the system [19]. Table 3 indicates a tentative mapping between these
models and the ones introduced in this paper.

These works rely on the existence of a common conceptual model (a.k.a struc-
tural model). However, such a premise is not always true in a service-oriented sce-
nario which questions the holistic and linear conception that characterize traditional
database development. In the past, data modeling carried an expectation of unification
-a prerequisite for effective communication and data sharing was the agreement of a
single common data model. However, this is no longer true in a service-oriented ap-
proach where partners can be reluctant to disclose their data schemas, and two parties
can communicate if they can agree on a proper mapping between their respective data
models without the existence of a common structural model.

An eclectic approach is taken in [25] for WebML, a Web modeling language that
contemplates the interplay between Web applications and Web services. Here, the nav-
igation model is enhanced to describe calls to Web services, capturing the relationship
between the invocations and the data units which provide their inputs, and, respec-
tively, capture their outputs. Moreover, Web services can be engaged in conversations.
A WebML conversation “is a collection of Web service operations, belonging to one or
more Web services, used together to achieve a given application goal and orchestrated
by a Web hypertext” [25]. From this perspective, WebML’s conversations play a sim-
ilar role to our workspace in the sense that conversations are meaningful aggregations
of lower tasks. The difference stems from conversations exhibiting a more conductive
approach that the explorative nature of workspaces. Also the starting point is differ-

34

www.manaraa.com

ent. WebML is thought for data-intensive Web applications, and hence, the conceptual
model is the starting point on which the rest of the perspectives are constructed. By
contrast, our approach does not address Web applications in general but Web portals
in particular. In this setting, a component-based approach is more akin to the notion of
the portal as a doorway to other applications. Hence, our approach is process-centered
rather than data-centered. Process-centered approaches are predominant when integra-
tion happens at the middle-tier.

Integration at the middle-tier is first exhibited by Workflow Management Systems
which are currently slightly evolving towards service-oriented architectures based on
Web Services. However, here integration is at the back-end where the browser just
provides a view for what is happening at the back-end. This approach was pioneered
by WWWorkflow [1]. Designed for intranets where the users exploit WWW browsers
as the only client software, its architecture contains three main parts: the workflow
engine, the workflow database and a CGI-gateway to the WWW. The latter allows users
to interact with the system through a triple frame presented in their browsers. A first
frame displays the actual to-do-list of a user. A middle frame presents the workspace
containing an HTML document describing the activity. In the bottom frame, buttons
allow submission of the completion status of this activity. Unlike our approach, only
one activity is available at a time, and all the flow dependencies are enforced at the
back-end.

A recent extension of WebML is also contemplating process-intensive applications
[4]. To this end, the Conceptual Design phase of process-intensive applications in-
cludes the Process design task, focusing on the high level schematization of the pro-
cesses underlying the application, and the Process distribution task, which addresses
the allocation of subprocesses to different peers, and therefore occurs only when there
are several Web servers involved in the process enactment. Process and distribution
influence data and hypertext design, which should take into account process require-
ments. This moves to front-end integration where the presentation layer is used to
govern the process. In the case of WebML this leads to introduce two additional con-
structs to the navigation model, namely, the If unit and the Switch unit as control-flow
constructs. It is worth noticing that Brambilla et al consider a multi-user process where
Web applications support a process view for a particular user role. From this perspec-
tive, front-end integration (i.e. those based on anchor activation) falls short to enforce
constraints between activities assigned to different users. Thus, synchronization across
site views is obtained by having activities record their progress in a database, and using
conditional navigation (based on the values actually found in the database).

This work differs from WebML in both the starting setting and the design formal-
ism. Our approach starts with a “palette of components” (i.e. portlets) rather than
a conceptual model, and statecharts are used as the main formalism. Statecharts are
so far expressive enough to capture task flows, and, as opposed to ad-hoc notations,
bring all the experience on validation and verification techniques and tooling that are
so important when developing Web portals.

Finally, Web applications as conglomerates of presentation components is a more
elusive subject. It has been recently addressed in [43] where a framework is introduced
for integrating components by combining their presentation front-ends. A composite
application consists of one or more components, a specification of the composition

35

www.manaraa.com

model (i.e. integration logics that coordinate the components at runtime) and a mid-
dleware for the execution of the component. By using adapters the model can integrate
heterogeneous components. The work stress the importance of an event-driven archi-
tecture where the composition model includes event subscription information to facili-
tate the communication among presentation components. In addition, the composition
model may contain additional data transformation logics via XSLT and integration log-
ics in the form scripts or references to external code. Our work share similar aims but
focuses on portlets. That is, (1) the component model considers portlets, (2) the com-
position model is described through statecharts where events are restricted to anchor
navigation, and (3) the layout model benefits from the statechart hierarchical structure.
The work at [43] can be considered a Domain-Specific Language for composite Web
applications. By contrast, our approach attempts to build upon existing formalisms
(e.g. statecharts) rather than coming with a new language, and then, map this formal-
ism to concrete frameworks where the one of [43] can be included as a PSM. At the
current stage of technology where presentation integration is still immature, an MDD
approach as the one presented in this paper, facilitates easy platform portability and
user adoption by building on existing (meta) models.

10 Conclusions
The recent release of the WSRP and JSR168 standards promises to achieve portlet in-
teroperability. This will certainly fuel the transition from content syndication to portlet
syndication. In this context, portlet-oriented methodologies will be highly sought.

This work illustrates the use of MDD techniques to achieve such scenario where
portal construction is now a pipeline-like process of model transformations. Specifi-
cally, the designer abstracts away from portal pages, and describes portal behavior in
terms of statecharts (i.e. HMBS statecharts) that are then gradually realized as eXo ar-
tifacts. The paper strives to illustrate the benefits brought by MDD in general, and the
use of statecharts in particular, for the design of portlet-intensive portals. Advantages
are reported for the analysis, design, implementation and maintenance of the portal.

So far, our implementation does not take the full potential of ebXML registries [27],
and portlet selection is conducted manually rather than through queries to the ebXML
registry. However, future work includes dynamic selection of portlets from third parties
similar to the one provided from traditional Web Services. Yet, this still requires the
portlet market to mature.

Another follow-on is extending state diagrams to contemplate portlet events. WSRP
2.0, introduces an event-based mechanisms where portlets can subscribe to events be-
ing generated by other portlets. In this way, events can be risen by either GUI widgets
or the portlets themselves when they reach a certain state. Our insights is that our
approach can accommodate the novelties brought by WSRP 2.0

Acknowledgments. This work was co-supported, on the one hand, by the Span-
ish Ministry of Science & Education, and the European Social Fund under contract
TIC2005-05610, and on the other hand, by Séneca Foundation (Murcia, Spain) with
the grant 05645/PI/07.

36

www.manaraa.com

References
[1] C. Ames, S. Burleigh, and S. Mitchell. WWWorkflow: World Wide Web based

Workflow. In Hawaii International Conference on System Sciences, 1997.

[2] D. Berardi, D. Calvanese, G. de Giacomo, M. Lenzerini, and M. Mecella. Auto-
matic Composition of E-services that Export their Behavior. In Proc. of the 1st
International Conference on Service Oriented Computing (ICSOC 2003), Lecture
Notes in Computer Science (LNCS), pages 43–58. Springer, 2003.

[3] J. Blattman, N. Krishnan, D. Polla, and M. Sum. Open-Source
Portal Initiative at Sun, Part 2: Portlet Repository, 2006. at
http://developers.sun.com/prodtech/portalserver/reference/techart/portlet-
repository.html (July 2007).

[4] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu. Process modeling in
web applications. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), 15(4):360–409, October 2006.

[5] J. Bézivin. In Search of a Basic Principle for Model Driven Engineering. UP-
GRADE, Novótica, 2, April 2004.

[6] F. Casati and M. C. Shan. Dynamic and adaptive composition of e-services. In-
formation Systems, 26(3):143–163, May 2001.

[7] S. Ceri, P. Fraternali, and A. Bongio. Conceptual Modeling of Data-Intensive
Web Applications. IEEE Internet Computing, 6(4):20–30, 2002.

[8] K. Czarnecki and S. Helsen. Classification of Model Transformation Approaches.
In Workshop on Generative Techniques in the Context of Model-Driven Architec-
ture (OOPSLA03), October 2003.

[9] O. Díaz, J. Iturrioz, and A. Irastorza. Improving Portlet Interoperability
through Deep Annotation. In 14th International Conference on World Wide Web
(WWW’05), pages 372–381, New York, NY, USA, 2005. ACM Press.

[10] O. Díaz and J.J. Rodríguez. Portlets as Web Components: an Introduc-
tion. Journal of Universal Computer Science, 10(4):454–472, Apr 2004.
http://www.jucs.org/jucs_10_4/portlets_as_web_components.

[11] Oscar Díaz and Iñaki Paz. Turning web applications into portlets: Raising the is-
sues. In Wojciech Cellary and Hiroshi Esaki, editors, Symposium on Applications
and the Internet (SAINT’05), pages 31–37. IEEE Computer Society, 2005.

[12] eXo. Exo Platform v1. at http://docs.exoplatform.org/exo-
documents/exo.site/index.html (October 2007).

[13] Exo. Exo Community, May 2006. at http://www.exoplatform.org/ (October
2007).

37

www.manaraa.com

[14] M.C. Ferreira de Oliveira, M.A. Santos Turine, and P.C. Masiero. A Statechart-
Based Model for Hypermedia Applications. ACM Transactions on Information
Systems, 19(1):28–52, January 2001.

[15] P. Fraternali and P. Paolini. Model-driven development of Web applications: the
AutoWeb system. ACM Transactions on Information Systems (TOIS), 18(4):323–
382, October 2000.

[16] R. Gitzel, A. Korthaus, and M. Schader. Using established Web Engineering
knowledge in model-driven approaches. Science of Computer Programming,
66(2):105–124, April 2007.

[17] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293–333, October
1996.

[18] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the Formal Semantics
of Statecharts. In 2nd IEEE Symposium on Logic in Computer Science, pages
54–64, 1987.

[19] R. Hennicker and N. Koch. Modeling the User Interface of Web Applications
with UML. In Practical UML-Based Rigorous Development Methods - Coun-
tering or Integrating the eXtremists. Workshop of the pUML-Group at the UML
2001, 2001.

[20] IBM. WebSphere. at http://www.ibm.com/websphere (October 2007).

[21] Java Community Process. JSR 168 portlet specification, October 2003. at
http://www.jcp.org/en/jsr/detail?id=168.

[22] N. Koch. Transformation Techniques in the Model-Driven Development Process
of UWE. In Proceedings of 6th International Conference on Web Engineering.
2nd International Workshop on Model Driven Web Engineering (MDWE’06), vol-
ume 155, July 2006.

[23] N. Koch, A. Kraus, and R. Hennicker. The Authoring Process of the UML-based
Web Engineering Approach. In 1st International Workshop on Web-Oriented
Software Technology, June 2001.

[24] C.W. Krueger. Software Reuse. ACM Computing Surveys, 24(2), June 1992.

[25] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, and P. Fraternali. Model-driven
design and deployment of service-enabled web applications. ACM Transactions
on Internet Technology (ACM TOIT), 5(3):439–479, August 2005.

[26] N. Moreno and A. Vallecillo. A Model-Based Approach for Integrating Third
Party Systems with Web Applications. In Proceedings of the 5th International
Conference on Web Engineering (ICWE’05), pages 441–452, 2005.

[27] OASIS. Electronic Business using eXtensible Markup Language (ebXML). at
http://www.ebxml.org/ (July 2007).

38

www.manaraa.com

[28] OASIS. Web Service for Remote Portlets Specification Version 1.0, 2003.
http://www.oasis-open.org/commitees/tc_home.php?wg_abbrev=wsrp.

[29] Object Management Group (OMG). MDA Guide Version 1.0.1.omg/2003-06-01,
june 2003. at http://www.omg.org/docs/omg/03-06-01.pdf (April 2007).

[30] Object Management Group (OMG). MOF QVT Final Adopted Specification
/2005-11-01, 2005. at http://www.omg.org/docs/ptc/05-11-01.pdf (July 2007).

[31] Object Management Group (OMG). Unified Modeling Language: Superstruc-
ture, August 2005. at http://www.omg.org/cgi-bin/doc?formal/05-07-04 (April
2007).

[32] Object Management Group (OMG). Software Process En-
gineering Metamodel, version 1.1 SPEM, January 2007. at
http://www.omg.org/technology/documents/formal/spem.htm.

[33] A. Olivé. Conceptual Modeling of Information Systems. Springer, October 2007.

[34] Oracle. Oracle Portal. at http://www.oracle.com/appserver/portal_home.html
(October 2007).

[35] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic Matching of
Web Services Capabilities. In 1st International Semantic Web Conference, pages
333–347. Springer-Verlag, June 2002.

[36] B. Selic. The pragmatics of model-driven development. IEEE Software,
20(5):19–25, 2003.

[37] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic Composition of Web Services
using Semantic Descriptions. In 1st Workshop on Web Services: Modeling, Archi-
tecture and Infrastructure. In conjunction with ICEIS 2003, pages 17–24. ICEIS
Press, April 2003.

[38] J. Sánchez Cuadrado, J. García Molina, and M. Menárguez Tortosa. RubyTL:
A Practical, Extensible Transformation Language. In Model Driven Architecture
- Foundations and Applications. 2nd European Conference, ECMDA-FA2006.
Bilbao, Spain, pages 158–172. Springer-Verlag, July 2006.

[39] H. Stern. Second-Generation Portals. Web Services Journal, pages 34–35, De-
cember 2001.

[40] The Delphi Group. Portal Lifecycle Management: Addressing the Hidden Cost
of Portal Ownership, 2001. at http://www.mongoosetech.com/downloads/ por-
tal_ownership.pdf.

[41] D. Thomas. Programming Ruby. the Pragmatic Programmers’ Guide, 2004. at
http://www.rubycentral.com/book/ (April 2007).

[42] W3C. Cascading Style Sheets (CSS). at http://www.w3.org/Style/CSS/ (April
2007).

39

www.manaraa.com

[43] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera. A frame-
work for rapid integration of presentation components. In Proceedings of the
2007 International Conference on the World Wide Web (WWW’07), pages 923–
932, May 2007.

40

